Methods to Estimate Unmetered Ground-Water Withdrawals in the Yakima River Basin, Washington

Acknowledgments

- U.S. Bureau of Reclamation
- Yakama Nation
- Washington State Department of Ecology

Yakima River Basin, Washington

- Demands for ground water are increasing
- Total volume of pumped ground water is unknown
- Methods to estimate unmetered pumpage are needed

Approach

- Census data
- Metered pumpage
- Water rights
- Land use / water application rates
- Energy consumption

Outline

1. Flow-rate measurements at irrigation wells using ultrasonic signals

- 2. Electrical power demand
- 3. Power consumption coefficient (PCC)

1. Flow Measurements: Ultrasonic Signals

$$Q = V \times A$$

Ultrasonic Flow Meter

- A (cross-sectional area) is known
- V (fluid velocity) is computed from ∆t

1. Flow Measurements: Ultrasonic Signals (cont'd)

- Full pipe flow
- Minimum turbulence 10 pipe diameters of straight pipe downstream of elbows or valves
- Clean surface for transducers

Obstacles

Straight pipe is ~10 pipe diameters

2. Electrical Power Demand

Measured at watthour-meter

P = diskrate x Kh factor x 3.6

Where

P is power demand in kW diskrate in rev / sec Kh factor in Wh / rev 3.6 is conversion factor

Current Transformer Ratios

P = diskrate x Kh factor x 3.6 x 80

3. Power Consumption Coefficient (PCC)

Rating factor for the pumping installation

$$PCC = P / Q \times 5,433$$

Where

PCC in kWh / acre-ft
P power demand in kW
Q flow rate in gpm
5,433 is conversion factor

3. Power Consumption Coefficient (PCC)

(cont'd)

PCC can vary at a location due to

- changing pumping installations
- changing hydrologic conditions

Future steps:

- Measure PCC's during different times of the year.
- Correlate PCC's with hydrologic conditions and installation type.
- Apply appropriate PCC's to known electrical usage over time to calculate the volume pumped.

Summary

Several methods to estimate pumpage, including electrical energy consumption

- PCC relates power demand to pumping rate
- PCC's measured and related to pump-site characterisitics
- Appropriate PCC's applied to electrical usage to estimate volume pumped

More Information

Dash, R.G., Troutman, B.M. and Edelmann, P., 1999, Comparison of two approaches for determining groundwater discharge and pumpage in the Lower Arkansas River Basin, Colorado, 1997-98: U.S. Geological Survey Water-Resources Investigations Report 99-4221, 39 p.

Maupin, M.A., 1999, Methods to determine pumped irrigationwater withdrawals from the Snake River between Upper Salmon Falls and Swan Falls Dams, Idaho, using electrical power data, 1990-95: U.S. Geological Survey Water-Resources Investigations Report 99-4175, 20 p.

Hurr T.R. and Litke, D.W., 1989, Estimating pumping time and ground-water withdrawals using energy-consumption data: U.S. Geological Survey Water-Resources Investigations Report 89-4107, 27 p.

